fitting module

lys.fitting.addFittingFunction(func, name)[source]

Add fitting function to the lys fitting module.

Use lys.functions.registerFittingFunction() instead of this function.

List of pre-defined fitting functions

lys.fitting.Functions.const(x, C)[source]

Function for fitting.

y = C

lys.fitting.Functions.cos(x, position, height, frequency, phase)[source]

Cosine function

y = h \cos(f(x-x_0)+\phi)

Parameters
  • positionx_0.

  • heighth.

  • frequencyf.

  • phase\phi.

lys.fitting.Functions.doubleExp(x, position, height, a, b)[source]

Double exponential function with step.

y = h\theta (x-x_0)(1-\exp[-(x-x_0)/a]^2)\exp[-(x-x_0)/b]

Parameters
  • positionx_0.

  • heighth.

  • aa.

  • bb.

lys.fitting.Functions.error(x, position, height, fwhm)[source]

Error function for fitting.

For convenience, this function is defined as

h(\mathrm{erf}[(x-x_0)/\tau] + 1)/2

erf is error function (scipy.special.erf).

FWHM is of gaussian function integrated.

Parameters
  • positionx_0.

  • heighth.

  • fwhm – :2\sqrt{\log 2}\tau.

lys.fitting.Functions.exp(x, position, height, a)[source]

Simple exponential function

y=h\exp(a(x-x_0))

Parameters
  • positionx_0.

  • heighth.

  • aa.

lys.fitting.Functions.gauss(x, position, height, sigma)[source]

Simple gaussian

y=h\exp[-(x-x_0)^2/2\sigma^2]

Parameters
  • positionx_0.

  • heighth.

  • sigma\sigma.

lys.fitting.Functions.linear(x, a=1, b=0)[source]

Function for fitting.

y = ax + b

lys.fitting.Functions.lorentz(x, position, height, fwhm)[source]

Lorentz function.

y = hd^2/[(x-x_0)^2+d^2]

Parameters
  • positionx_0.

  • heighth.

  • fwhm2d.

lys.fitting.Functions.quadratic(x, a, b, c)[source]

Function for fitting.

y = ax^2 + bx + c

lys.fitting.Functions.relaxOsci(x, position, height, frequency, phase, offset, tau)[source]

Relaxed ocillation.

y=h(C + cos[f(x-x_0)+\phi])\exp[-(x-x_0)/\tau]\theta(x-x_0)

Parameters
  • positionx_0.

  • heighth.

  • frequencyf.

  • phase\phi.

  • offsetC.

  • tau\tau.

lys.fitting.Functions.step(x, position, height)[source]

Heaviside step function for fitting.

y = h \theta(x-x_0)

Parameters
  • positionx_0.

  • heighth.

lys.fitting.Functions.stepExp(x, position, height, a)[source]

Exponential decay multiplied by step function.

y = h\theta(x-x_0)\exp[-a(x-x_0)]

Parameters
  • positionx_0.

  • heighth.

  • aa.